没等大家反映过来,射日弓上出现了一阵青色的光芒,青色光芒被注入到那个玻璃内,玻璃上立即出现了一行字迹:“程序验证无误!”却见射日弓上立即出现了一把钥匙的印记。
黄金剑有些疑惑道:“射日弓,你不是吧?这个程序你都写得出来?还是你以前就搞这个研究的?”
飘雪:“我真是对你佩服得五体投地。这个程序你都能弄出来,佩服佩服!”
红色球:“我真的想知道你是怎么弄出来的?”
拳头:“附议。”
射日弓:“嘿嘿,这你们就不知道了吧!刚才拳头不是说了美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。我马上入侵伊利诺大学的档案库,马上就查到了那个证明程序,直接来个复制粘贴不就搞定了嘛!哪需要想得那么复杂!”
红色球:“不错!”
拳头:“我还真的是笨呀,怎么就没想到呢!看来这些密码都应该是可解的!”
黄金剑:“到也别太乐观,前两关就是这些问题,到后面说不定就来个前人没有证明的猜想,那就没得答案!”
飘雪:“这是世界近代三大数学难题之一四色猜想。真的不知道后面会不会把那些难题全拿来考我们,其他有些猜想可是没有证明的!”
射日弓:“好了,别杞人忧天了,反正我们是决心创到最后一关,解不了题就暴力破门吧,走了,别浪费时间……”说完,射日弓已经接触第三关大门,将门打开了,随即跨门而入。
其余人自然是马上跟上去,大家进入了第三关。
红色球看着这个问题,有些无语,说道:“你们的猜测已经成为现实了,我在网上搜索了一下,第二个世界近代三大数学难题之一,不过我是没找到证明程序,只找到了证明的方法。”
拳头:“有了方法那就好办了,我也找到了,这个问题我来吧!”
射日弓:“感谢佛主……”
飘雪:“拳头,加油吧,先说一下,3分钟解决问题,否则,就别写程序了,还是暴力破解好了!”
“没问题,只要有方法,程序还不是手到擒来!”说完,拳头就去工作了。
对于他们来说,写程序肯定不可能再自己一个字母一个字母地敲了,智能程序都能够写出来,自动写程序的程序还制造不出来吗?
只要把问题输入,把解题方法输入,一个程序从编写到编译再到执行,分分钟的问题,除非你这个问题解题方法有错或者是真的是超出了这个程序的能力,否则,编程,小CASE!
费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极
大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子
」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的
数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内
容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定
理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之
两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有
整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等。
费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法
找到整数解。
当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙
法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百
多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最
后定理也就成了数学界的心头大患,极欲解之而后快。
十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和
三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫
斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,
有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然
如此仍然吸引不少的「数学痴」。
二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。
虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解
决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是
利用二十世纪过去三十年来抽象数学发展的结果加以证明。
五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德
国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联
论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论
由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的
证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以
修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金
,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。
要证明费马最后定理是正确的
(即xn + yn = zn 对n33 均无正整数解)
只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。
三分钟过后,拳头将程序注入了玻璃密码箱中,拿到了进入第四关的钥匙。
大家现在是什么话也没有说,直接进入了第四关。前三关都这样了,那后面还不难上天了,时间就是关数呀!
进入了第四关,大家看着面前的玻璃字迹,都无言的露出了苦笑。
红色球:“这个问题谁能解决?”
黄金剑:“我能解决就成世界级的大数学家了!”
飘雪:“这个问题无解!”
射日弓:“没得解决的方法,没有程序。”
玻璃上写着一行惊心动魄地信息:“请写出证明哥德巴赫猜想的程序。”
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
黄金剑:“还是暴力破解吧,这个问题没得解决方法!”
红色球:“看来也只有如此了!还真的被猜对了,世界近代三大数学难题,这才第几关?第四关……”
黄金剑:“好了,别做感叹了,我到是要看看到底后面会是些什么难题!你们让开!”说着,黄金剑已经开始闪烁起金黄色的光芒,光芒残绕着剑身,发出剧烈地颤动!
其余四个徽章立马让到了房间的角落里,只见黄金剑飞到了房间的顶部,突然一阵耀眼的金色光芒闪过,正中央的玻璃已经被呈十字形划开……
光芒减弱,黄金剑上出现了了进入第五关的钥匙……
黄金剑:“走吧,后面恐怕是一点都不好过呀!咱们得抓紧时间了,我看咱们还是别去解决什么难题了,看我这样一剑解决问题,一分钟都没到……”说着,黄金剑已经打开了第五关的大门……(未完待续)