看似平凡的数字,为什么说他最神奇呢?我们把它从1乘到6看看
148571=14857
14857=85714
14857=48571
148574=57148
148575=71485
148576=85714
同样的数字,只是调换了位置,反复的出现。
那么把它乘与7是多少呢?我们会惊奇的发现是999999
而14+857=999
14+8+57=99
最后,我们用14857乘与14857
答案是:04081449前五位+上后五位的得数是多少呢?
0408+1449=14857
===分割線===
关于其中神奇的解答
“14857”
它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案,它还有更神奇的地方等待你去发掘!也许,它就是宇宙的密码┅┅
148571=14857(原数字)
14857=85714(轮值)
14857=48571(轮值)
148574=57148(轮值)
148575=71485(轮值)
148576=85714(轮值)
148577=999999(放假由9代班)
148578=114856(7分身,即分为头一个数字1与尾数6,数列内少了7)
148579=18571(4分身)
1485710=148570(1分身)
1485711=157147(8分身)
148571=171484(5分身)
148571=1857141(分身)
1485714=1999998(9也需要分身变大)
继续算下去……
以上各数的单数和都是“9”。有可能藏着一个大秘密。
以上面的金字塔神秘数字举例:1+4++8+5+7=7=+7=9;您瞧瞧,它们的单数和竟然都是“9”。依此类推,上面各个神秘数,它们的单数和都是“9”;怪也不怪!(它的双数和7还是的三次方)无数巧合中必有概率,无数吻合中必有规律。何谓规律?大自然规定的纪律!科学就是总结事实,从中找出规律。
任意取一个数字,例如取48965,将这个数字的各个数字进行求和,结果为4+8+9+6+5=,再将结果求和,得+=5。我将这种求和的方法称为求一个数字的众数和。
所有数字都有以下规律:
[1]众数和为9的数字与任意数相乘,其结果的众数和都为9。例如06的众数和为9,而06*=67,数字67的众数和也为9(6+7++=18,1+8=9)。
[]众数和为1的数字与任意数相乘,其结果的众数与被乘数的众数和相等。例如1的众数和为4,5的众数和为1,而5*1=45,数字45的众数和也为4(4+++5=1,1+=4)。
[]总结得出一个普遍的规律,如果a*b=c,则众数和为a的数字与众数和为b的数字相乘,其结果的众数和亦与c的众数和相等。例如*4=1。取一个众数和为的数字,如01,再取一个众数和为4的数字,如11,两数相乘,结果为01*11=51,51的众数和为(++5+1+=1,1+=),可见*4=1,数字1的众数和亦为。
[4]另外,数字相加亦遵守此规律。例如+4=7。求数字01和11的和,结果为1,求1的众数和,得数字7(+1+=7),刚好与4相加的结果亦为7。
令人奇怪的是,中国古人早就知道此数学规律。我们看看“河图”与“洛书”数字图就知道了。以下是“洛书”数字图。
49
57
816(洛书)
世人都知道,“洛书”数字图之所以出名,是因为它是世界上最早的幻方图,它的特点是任意一组数字进行相加,其结果都为15。其实用数字众数和的规律去分析此图,就会发现,任意一组数字的随机组合互相相乘,其结果的众数和都为9,例如第一排数字的一个随机组合数字为94,第二行的一个随机组合数字为159,两者相乘,其结果为146916,求其众数和,得1+4+6+9+1+6=7,+7=9,可见,结果的众数和都为9。
神奇的“缺8数”。
145679,这个数里缺少8,我们把它称为“缺8数”。
开始,我以为这“缺8数”只有“清一色”的奇妙。谁知经过一番资料的查找,竟发现它还有许多让人惊讶的特点。
一,清一色
菲律宾前总统马科斯偏爱的数字不是8,却是7。
于是有人对他说:“总统先生,你不是挺喜欢7吗?拿出你的计算器,我可以送你清一色的7。”
接着,这人就用“缺8数”乘以6,顿时,777777777映入了马科斯先生的眼帘。
“缺8数”实际上并非对7情有独钟,它是一碗水端平,对所有的数都一视同仁的:
你只要分别用9的倍数(9,18……直到81)去乘它,则111111111,……直到999999999都会相继出现。
1456799=111111111
14567918=
1456797=
1456796=444444444
14567945=555555555
14567954=666666666
1456796=777777777
1456797=888888888
14567981=999999999
二,三位一体
“缺8数”引起研究者的浓厚兴趣,于是人们继续拿的倍数与它相乘,发现乘积竟“三位一体”地重复出现。
1456791=148148148
14567915=185185185
1456791=595959
1456790=707070
145679=407407407
1456796=444444444
1456794=518518518
14567948=595959
14567951=696969
14567957=707070
14567978=969696
14567981=999999999
这里所得的九位数全由“三位一体”的数字组成,非常奇妙!
三,轮流“休息”
当乘数不是的倍数时,此时虽然没有“清一色”或“三位一体”现象,但仍可看到一种奇异性质:
乘积的各位数字均无雷同。缺什么数存在着明确的规律,它们是按照“均匀分布”出现的。
另外,在乘积中,缺、缺6、缺9的情况肯定不存在。
先看一位数的情形:
1456791=145679(缺0和8)
145679=469158(缺0和7)
1456794=498716(缺0和5)
1456795=617895(缺0和4)
1456797=8641975(缺0和)
1456798=987654(缺0和1)
上面的乘积中,都不缺数字,6,9,而都缺0。缺的另一个数字是8,7,5,4,,1,且从大到小依次出现。
让我们看一下乘数在区间[10~17]的情况,其中1和15因是的倍数,予以排除。
14567910=1456790(缺8)
14567911=1580469(缺7)
1456791=1604987(缺5)
14567914=17869506(缺4)
14567916=19750864(缺)
14567917=0987654(缺1)
以上乘积中仍不缺,6,9,但再也不缺0了,而缺少的另一个数与前面的类似——按大小的次序各出现一次。
乘积中缺什么数,就像工厂或商店中职工“轮休”,人人有份,但也不能多吃多占,真是太有趣了!
乘数在[19~6]及其他区间(区间长度等于7)的情况与此完全类似。
14567919=4567901(缺8)
1456790=4691580(缺7)
145679=7160498(缺5)
145679=8950617(缺4)
1456795=08641975(缺)
1456796=0987654(缺1)
一以贯之当乘数超过81时,乘积将至少是十位数,但上述的各种现象依然存在。再看几个例子:
(1)乘数为9的倍数
1456794=999999997,只要把乘积中最左边的一个数加到最右边的7上,仍呈现“清一色”。
又如:145679108=1(乘积中最左边的一个数1加到最右边的上,恰好等于)
145679117=144444444(乘积中最左边的一个数1加到最右边的上,恰好等于4)
145679171=111111109(乘积中最左边的一个数加最右边的“09”,结果为11)
()乘数为的倍数,但不是9的倍数
14567984=1070706,只要把乘积中最左边的一个数1加到最右边的6上,又可看到“三位一体”现象。
()乘数为k+1或k+型
14567998=10987654,表面上看来,乘积中出现雷同的;
但据上所说,只要把乘积中最左边的数1加到最右边的上去之后,所得数为0987654,是“缺1”数。
而根据上面的“学说”可知,此时正好轮到1休息,结果与理论完全吻合。
四,走马灯
冬去春来,4个节气仍然是立春、雨水、惊蛰……其次序完全不变,表现为周期性的重复。
“缺8数”也有此种性质,但其乘数是相当奇异的。
实际上,当乘数为19时,其乘积将是4567901,像走马灯一样,原先居第二位的数却成了开路先锋。
深入的研究显示,当乘数成一个公差等于9的算术级数时,出现“走马灯”现象。
现在,我们又把乘数依次换为10,19,8,7,46,55,64,7(它们组成公差为9的等差数列):
14567910=1456790
14567919=4567901
1456798=4567901
1456797=4567901
14567946=5679014
14567955=6790145
14567964=7901456
1456797=9014567
以上乘积全是“缺8数”!数字1,,,4,5,6,7,9像走马灯似的,依次轮流出现在各个数位上。
五,回文结对携手同行
“缺8数”的“精细结构”引起研究者的浓厚兴趣,人们偶然注意到:
1456794=498716
1456795=617895
前一式的积数颠倒过来读(自右到左),不正好就是后一式的积数吗?
(但有微小的差异,即5代以4,而根据“轮休学说”,这正是题中的应有之义。)
这样的“回文结对,携手并进”现象,对1、14、1、等各对乘数(每相邻两对乘数的对应公差均等于9)也应如此。
例如:
1456791=1604987
14567914=1789506
145679=7160498
145679=8950617
14567967=8716049
14567968=8950617
六,遗传因子
“缺8数”还能“生儿育女”,这些后裔秉承其“遗传因子”,完全承袭上面的这些特征。
所以这个庞大家族的成员几乎都同其始祖145679具有同样的本领。
例如,5061789是“缺8数”与41的乘积,所以它是一个衍生物。
我们看到,5061789=1518518517。
将乘积中最左边的数1加到最右边的7上之后,得到8。如前所述,“三位一体”模式又来到我们面前。
“缺8数”还有更加神奇壮观的回文现象。我们继续做乘法:
1456799=111111111
14567999=11
145679999=11
1456799999=14444441
14567999999=145555541
145679999999=1456666541
1456799999999=14567776541
14567999999999=145678876541
145679999999999=1456789876541
奇迹出现了!等号右边全是回文数(从左读到右或从右读到左,同一个数)。
而且,这些回文数全是“阶梯式”上升和下降,神奇、优美、有趣!
因为145679=6677,所以“缺8数”是一个合数。
“缺8数”和它的两个因数667、7,这三个数之间有一种奇特的关系。
一个因数667的首尾两个数和7、就组成了另一个因数7;
而“缺8数”本身数字之和1+++4+5+6+7+9也等于7。
可见“缺8数”与7天生结了缘。
更令人惊奇的是,把1/81化成小数,这个小数也是“缺8数”:
1/81=0.014567901456790145679……
为什么别的数字都不缺,唯独缺少8呢?
原来1/81=1/91/9=0.1111…0.11111….
这里的0.1111…是无穷小数,在小数点后面有无穷多个1。
“缺8数”的奇妙性质,集中体现在大量地出现数学循环的现象上,而且这些循环非常有规律,令人惊讶。
“缺8数”的奇特性质,早就引起了人们的浓厚兴趣。而它其中还有多少奥秘,人们一定会把它全部揭开。
“缺8数”太奇妙了,让我这个对数学没啥兴趣的人也忍不住要大加赞美啊!
(未完待续)